Time: 3 hours

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. I Year I Semester Regular Examinations December 2018

MATHEMATICS-1

(Common to All)

Max. Marks: 60

5M

PART-A

- (Answer all the Questions 5 x 2 = 10 Marks) **1 a** Define Symmetric & Skew-symmetric matrices. **b** Prove that $\Gamma(1)=1$. **c** If $\vec{f} = xy^2\vec{i} + 2x^2yz\vec{j} - 3yz^2\vec{k}$ find $div.\vec{f}$ at (1, -1, 1). 2M
 - **d** Define Power Series. **d** Define Power Series. 2M
 - **e** Find the Fourier coefficient a_0 when $f(x) = \frac{x}{2}, -\pi < x < \pi$. 2M

$\frac{PART-B}{(Answer all Five Units 5 x 10 = 50 Marks)}$

UNIT-I

² Find the characteristic equation of the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ and hence compute A^{-1} .

Also find the matrix represented by $A^8 - 5A^7 + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + I$. 10M

Find the Eigen values and corresponding Eigen vectors of the matrix

$$\mathbf{3} \quad \mathbf{A} = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}.$$
 10M

4 a Find the volume of the sphere of radius 'a'. b Find the volume of the reel-shaped solid formed by the revolution about the y- axis, of the part of the parabola $y^2 = 4ax$ cut off by the latus- rectum. 5M

OR

5 a Verify Cauchy's mean value theorem for e^x and e^{-x} in (a,b).

b Evaluate
$$\int_{0}^{1} x^{5} \left[log\left(\frac{1}{x}\right) \right]^{3} dx$$
. 5M

8

UNIT-III

6 **a** If $u = tan^{-1} \left[\frac{2xy}{x^2 - y^2} \right]$, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$. 5M

b Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point (2,-1,2).

OR

5M

5M

- a Show that the rectangular solid of maximum volume that can be inscribed in a sphere is 7 a cube. 5M
 - **b** Show that $div(r^n\overline{r}) = (n+3)r^n$.

Show that the series $1 + r + r^2 + r^3 + \dots \infty$

OR

10M

10M

9 Discuss the convergence of the series:

i) Convergence if |r| < 1ii) Divergence if $r \ge 1$ iii) Oscillates if $r \leq -1$.

(i)
$$\frac{x}{1+x} + \frac{x^2}{1+x^2} + \frac{x^3}{1+x^3} + \dots$$

(ii) $1 + \frac{a+1}{b+1} + \frac{(a+1)(2a+1)}{(b+1)(2b+1)} + \frac{(a+1)(2a+1)(3a+1)}{(b+1)(2b+1)(3b+1)} + \dots$
UNIT-V
10M

10 Expand the function f(x) = |x| in $-\pi < x < \pi$ as a Fourier series and Deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} - - - = \frac{\pi^2}{8}$. OR

Obtain the Fourier series expansion of $f(x) = 2x - x^2$ in (0,3) and hence deduce that 11

$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \dots = \frac{\pi^2}{12}.$$
10M
END